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Abstract. We introduce an approximation to calculate the gravitational radiation pro- 

duced by the collision of true-vacuum bubbles that is simple enough to allow the sim- 

ulation of a phase transition by the collision of hundreds of bubbles. This “envelope 

approximation” neglects the complicated “overlap” regions of colliding bubbles and fol- 

lows only the evolution of the bubble walls. The approximation accurately reproduces 

previous results for the gravitational radiation from the collision of two scalar-field vac- 

uum bubbles. Using a bubble nucleation rate given by r = roe@, we simulate a phase 
transition by colliding 20 to 200 bubbles; the fraction of vacuum energy released into grav- 

ity waves is EGW/E,,, = O.OS(H/p)* and the peak of the spectrum occurs at urnax = 1.6b 

(Hz = 6xGp/3 is the Hubble constant associated with the false-vacuum phase). The spec- 

trum is very similar to that in the two-bubble case: except that the efficiency of gravity- 
wave generation is about five times higher, presumably due to the fact that a given bubble 

collides with many others. Finally, we consider two further “statistical” approximations, 

where the gravitational radiation is computed as an incoherent sum over individual bub- 

bles weighted by the distribution of bubble sizes. These approximations provide reasonable 

estimates of the gravitational-wave spectrum with far less computation. 
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I. Introduction 

The cosmic background of gravitational radiation provides a unique probe of the early 
universe. Unlike electromagnetic radiation, gravity waves propagate virtually unimpeded 

since the Planck epoch, providing an unmodified record of cosmic events. Possible cosmo- 

logical sources include the thermal background (the graviton analogue of the microwave 

background), inflation [I], cosmic strings [2], a pregalactic star population (31, and phase 

transitions [4]. In particular, strongly first-order phase transitions are among the most 

promising of all these sources [5]: Th e energy released in gravitational waves csn approach 

1% of that in the ambient thermal bath. 

In a recent paper we initiated a detailed investigation of gravity wave production 

from strongly first-order phase transitions by calculating the radiation from two colliding 
vacuum bubbles [6]. Beginning with a scalar field configuration corresponding to two 

bubbles nucleated simultaneously and far apart, we used the Klein-Gordon equation to 
evolve the scalar field for a time r comparable to the initial bubble separation. (In realistic 

phase transitions the duration of the transition is comparable to the typical separation of 

nucleation sites (71.) From the scalar-field configuration, we calculated the stress-energy 
tensor and, in the linearized gravity approximation, the energy spectrum of radiated gravity 

waves. The pair of vacuum bubbles radiates efficiently: the fraction of energy that goes 

into gravity waves is 
EGW 
-~1.3x10-3 
E YK 

(1) 

where Evac is the total energy liberated by the two vacuum bubbles, r is the total time 

of the bubble evolution, expected to be of order 0.01 to 1 of H-l, and HZ = 87rGp,,,/3 

is the Hubble parameter associated with the vacuum energy. The spectrum of radiation 
peaks at a frequency 

urnax N 3.87-l. C-4 

These results imply that vacuum bubble collisions can indeed be potent sources of 

gravitational radiation. However, our work has its limitations, the foremost being the use 

of a time cutoff in the simulation to model the end of the phase transition. Specifically, we 

smoothly ramped the scalar field gradients (the source of gravitational radiation) to zero 

after a time r. While such an ad hoc prescription greatly simplifies the problem and is 
probably reasonable, it clearly neglects multi-bubble effects. The motivation for colliding 

many bubbles is to model more realistically a phase transition. 

A direct attack on the many-bubble problem employing scalar-field evolution is numer- 

ically infeasible. The two-bubble problem was made tractable by exploiting the 0(2,1) 

symmetry possessed by the space-time of two vacuum bubbles, which makes the scalar field 
evolution effectively one, rather than two, dimensional. Even the slight generalization to 

a pair of bubbles nucleated at different times, a situation still having rotational symmetry 

about the axis connecting the two bubbles, proved nearly impossible. The most general 
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case of many bubbles in three dimensions has no symmetries and is beyond present com- 
puting capabilities. The problem is difficult numerically because of two disparate scales. 

The bubble wall thickness at nucleation is small compared to the size of the bubble at 

collision; moreover, the bubble wall becomes thinner due to Lorentz contraction as the 

bubble expands. 

To proceed further requires dispensing with the’detailed dynamics of the scalar field. 
The results of our two-bubble simulations suggested an elegant approximation. The spec- 

trum and amount of gravitational radiation depended only on the gross features of the 

bubble collisions: the vacuum energy and the size of the bubbles at the end of the phase 
transition (i.e., the cutoff time). Even though the field dynamics after a bubble collision 

are quite intricate, the overall contribution to the radiation from the complicated small- 
scale motions adds incoherently and is subdominant. This prompted us to consider an 

“envelope approximation”: the bubbles are treated as infinitely thin, and in the regions 
where bubbles overlap, the bubble wall is completely ignored. Only the envelope of the 

evolving bubble network is considered. As we shall discuss, the envelope approximation 

very accurately reproduces our previous results for two colliding bubbles and allows us 

to model a phase transition with the collision of hundreds of bubbles. When applied to 

a phase transition where the bubble nucleation rate increases exponentially with time, 

l? cx exp Pt, the fraction of vacuum energy liberated in gravitational waves is found to be 

EGW HZ 
- F= 0.06 - , 
E "L-2 0 P 

(3) 

or about five times the efficiency estimated from the collision of two bubbles (for such a 

nucleation rate, the duration of the transition is r - few p). 

The paper is organized as follows. The next Section of this paper describes the envelope 
approximation, with detailed comparisons to the previous two-bubble results obtained from 

scalar-field evolution [6]. In Section III we first review some pertinent aspects of bubble 

nucleation theory [7], and then present our numerical results for the gravitational radiation 

from large numbers of colliding bubbles. In Section IV, we present another approximation 
which treats the production of gravitational waves in a statistical sense: as the incoherent 

sum of radiation from individual bubbles, weighted by the distribution of bubble sizes. 

Many of the results in Section III can be reproduced by this simple recipe, and with far 

less computation. We finish with a summary of our work and some concluding remarks. A 

review of tensor spherical harmonics and some auxiliary formulas used in Section IV are 

relegated to an Appendix. A summary of the results of this paper and our earlier work 
[6]! as well as the application of our results to cosmological phase transitions, is presented 

elsewhere [8]. 
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II. Envelope Approximation 

(a} Review of vacuum bubbles 

We consider a real scalar field 13 with a potential possessing two non-degenerate local 

minima: 

.c = ;afipa,p -V(v). (4) 

Throughout we use a metric with signature (+ - --). The exact form for the potential is 

not important, but where needed we use 

V(cp) = &* -d,” + &$(lp + $00). 
The dimensionless number E measures the degree of symmetry breaking between the two 

minima near fps. The relative minimum corresponding to +ps is the “false vacuum,” 
while the global minimum corresponding to -cps is the “true vacuum.” The vacuum energy 

density is defined as the difference in energy density between the true and false vacua; 

here, p yac N 2&+~:. The height of the potential barrier between the two vacuum states is 

N X&8. The relevant features of the potential are that it possesses two inequivalent local 

minima differing in vacuum energy by pvacr and that the height of the barrier between the 

two minima is large enough so that the false vacuum decays via quantum tunnelling. 

Classically, the false-vacuum state is stable, but quantum effects cause its decay to 

the true-vacuum state. This decay proceeds via the quantum nucleation and expansion of 

bubbles of the true-vacuum phase which spontaneously appear from the false-vacuum state. 

Coleman has shown that the bubble with minimum action is 0(4)-invariant in Euclidean 

space [9]; the initial bubble profile is obtained by analytically continuing to Minkowski 

space and taking the t = 0 time slice. The -uum bubble then evolves according to the 

Klein-Gordon equation and has 0(3,1) symmetry; i.e., the scalar field ‘p is a function only 

of the quantity tZ - x2 - y* - .z*. The energy difference between the true and false vacuum 
phases creates an effective outward pressure on the bubble wall, causing it to expand with 

constant acceleration. For our purposes, the important aspects of bubble dynamics are 

that the expansion speed rapidly approaches the speed of light, and that the false-vacuum 

energy liberated becomes kinetic and gradient energy of the bubble wall [lo]. 

The bubble’s symmetry allows us to quantify the above statements while deriving a 

result which will be useful in the envelope approximation. First, the O(3,l) symmetry 

immediately implies that the position of the bubble wall is given by 

2 
%vdl - tZ = R;, 

where Ro is the initial radius of the bubble and x,,ll denotes a fiducial point within the 

bubble wall. Next, consider the stress-energy tensor associated with the expanding bubble: 

T&x, t) = ql@“P - S$l”L (7) 
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The energy density in the scalar field is given by the time-time component of the stress 

where we have used the spherical symmetry of the bubble solution. The bubble’s O(3,l) 

symmetry can be used to write the the energy of the bubble wall at any time t as 

E(t) =: 4~ 

=2Tp(~)2[t’dy+m-y], 

Pa) 

WI 

where s = m and v(s) = ~(r, t = 0) is the profile of the initial bubble solution. Note 

that for r* < t*, dqplds = 0 so the integral is zero. The two terms represent the kinetic 

and gradient energy of the bubble wall. We neglect the potential energy term inside the 

bubble wall as it rapidly becomes unimportant as the bubble wall gets thinner; we have 

not included the false-vacuum energy outside the bubble, as we are only interested in the 
energy liberated by the bubble. In Fig. 1, the kinetic and gradient energy for a bubble are 

shown as a function of time. After a short time, the energies become equal; each is half of 

4np,,,t3/3, the total vacuum energy liberated by the bubble. From Eq. (9b) it is simple 
to see that gradient and kinetic energies are equal and increase as t3 for t >> I&: dp/ds is 

only nonzero when s is close to Rs; when t > & each term in the integrand approaches 

(dcp/ds)*t3/s. 

(b) Envelope approximation 

As in our previous paper [6], we compute gravity-wave production in the linearized 

gravity approximation, valid for bubble sizes less than H-’ (recall HZ = 8~Gp,,/3). The 
energy radiated in gravitational waves can be expressed in terms of the Fourier transform 

of the spatial components of the scalar-field stress-energy tensor. Further, in computing 
Tij(k,w) we may neglect the Lgij piece as it is a pure trace and does not act as a source 

for gravitational radiation. Thus the fundamental quantity is 

Z’ij(k,w) = & lrn dt eiWt J d3Zai~a~~~-‘w”x (10) 

where & is a unit wave-vector. 4s before, we adopt Weinberg’s unusual normalization 

convention for the Fourier transform [ 111. Th e scalar-field configuration of interest is that of 

many colliding vacuum bubbles. In the envelope approximation we assume that the overlap 

regions where bubbles have expanded into one another do not contribute substantially to 

the gravitational radiation, and exclude these regions from the spatial integration (see 

Fig. 2). We can then break up the integral into integration regions, one surrounding each 
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nucleation site and extending out to the bubble radius. Equation (10) becomes 

where N is the number of bubbles, S, is the portion of the surface of bubble n that remains 

uncollided at time t, and the primed spherical coordinates are chosen independently around 

the center of each bubble. We have also assumed that the wall thickness is small compared 

to w-l: w&r << 1. This means e-iwr(‘X ’ IS essentially constant across the bubble wall and 
can be factored out of the r-integral. In practice, for the frequencies of interest, this is 

always an excellent approximation. 

Next we use the fact that each bubble is spherically symmetric around its center, 
so that p is independent of the angular variables. Dropping the primes for notational 

convenience, the stress tensor components become 

where xn is the nucleation site of the nth bubble and %i is the ith component of a unit 

vector pointing from x, in the direction di2: 

3 = sinBcos+, 6 = sinOsin4, i = co.98. 

Above we showed that the kinetic and gradient energy associated with a bubble wall are 

equal after a small amount of bubble expansion. Using Eq. (9a), for each bubble we have 

where the bubble radius R(t) x t. This is a very good approximation by the time a bubble 
has doubled in size; CJ Fig. 1. Substituting t3p,,,/3 for the radial integral in Eq. (12) 

leads to 

where t, is the nucleation time of bubble R. 

The total energy radiated in gravity waves is given in terms of Z’ij(iC,w) by [ll] 

” & = zGw*Aij,,,(l;)T~(k,w)~,(k,ccO 

where Aij,im is the projection tensor for gravity waves, 

Aij,lm(l;) GE 6if6jm - 21;ji<,6i[ + ~icii(jl;,ic, 

- @ijblm + +Sijii!km + ~6,,~ii<j. (1’3) 

6 



(c) Scaling properties 

From Eqs. (14) and (15), two important scaling relations are evident. First, the total 

radiated energy is explicitly proportional to p$,,, just as we found previously in the two- 

bubble case [6]. Second, since the bubbles expand at essentially the speed of light and to a 
good approximation have zero thickness and zero initial size, the problem has no intrinsic 

length/time scale. Making the transformation t + yt, x + yx, we find the following 

scaling properties: 
w 

w -+ -; 
7 

07a) 

dE s dE 
dudR*Yiii%+ (17b) 

EGW + ?EGw. U7c) 

The length/time scale is set by the average separation between bubble nucleation sites. 

Equations (17) show that the total energy radiated from a volume containing a fixed 

number of bubbles will vary with the fifth power of the mean bubble separation. As 

we will show in the next Section, these scalings can also be expressed in terms of the 
bubble nucleation rate, since the typical separation of nucleation sites is determined by 

the nucleation rate. For the two-bubble case, the above scalings were found previously to 

hold to very good accuracy [6], where the relevant scale is the total evolution time. These 

scalings have great practical importance as they allow us to apply the results of a single 

numerical simulation to any phase transition with a bubble nucleation rate of the same 

functional form. In particular, we shall use the functional form r 0: @-a nucleation rate 
that increases exponentially with time-in which case the length/time scale is just p-r. 

(d) Two bubbles, quadrupole approximation 

In order to determine the accuracy of the envelope approximation, we compare the 
results it gives for two bubbles to the results calculated previously with the exact scalar field 

evolution [6]. As a warm-up, we begin with the conventional “quadrupole approximation,” 

corresponding to the limit k. x + 0: 

Note that because our source is not small compared to the wavelength of the radiation, this 

approximation does not correspond to .the quadrupole term in the multipole expansion; 

see Ref. [6] for detailed elucidation of this point. The quadrupole approximation simplifies 
the requires calculations, and in the limit w + 0 gives the correct result; thus we use it as 

a starting point for our comparisons, 

Consider two bubbles of negligible initial size nucleated simultaneously at t = 0 on the 

t-axis at *d/2. The bubbles will first “kiss” at t = d/2. Define cost = dj2t for t > d/2 
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and cy = 0 for t < d/2; cy is the angle excluded from the angular integration because of 

bubble overlap in the envelope approximation. Then 

Using the spherical coordinates defined in Eq. (ll), 

and 

T,, = T9f/ = 7 ~-dteiwi (; ) C(t) 

T,, = + Jd;dteiw’ (t’ + ;) C(t), 

(20a) 

(20b) 

where we have included a time cutoff function C(t) which decreases smoothly from 1 to 0 

on a time scale 7 - O(d). As mentioned earlier, the cutoff was introduced in our previous 
two-bubble calculations to model the completion of the phase transition; C(t) is discussed 

in detail in Ref. [6]. 

Rotational symmetry around the z-axis implies the off-diagonal components of the 
stress tensor are zero, and Tij must be of the form 

Tij = D(w)6ij + A(w)6i,6jz. (21) 

The first term, being a pure trace, does not contribute to gravitational radiation. The 

second term is .‘ 

A(w) = Tzz - ;(T,, + TV;) 

= !pi;dteiut (; - g> C(t). 

Substitution into Eq. (15) gives 

& = Gw’]A(w)]* sin4 8; g = $Ls~~]A(w)]~. 

(22) 

(23) 

The comparison of the envelope approximation with the previous calculations using 

scalar-field evolution is shown in Fig. 3. (For reference, in the scalar-field evolution case 

we used r/d = 1.2 and a gaussian roll-off in the final 10% of the evolution time for 

C(t); see [6].) The features of the spectrum are reproduced remarkably well. The overall 

normalization of the envelope approximation is high by 20 percent. It may seem strange 

that the total power radiated is higher from an approximation which neglects a chunk of the 

source. However, when two bubbles collide, a reflected wave begins to propagate outward 

from the point of collision. This wave takes the approximate shape that the colliding 

portion of the bubbles would have had they not collided. By neglecting the interaction 
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region. we actually make a given bubble leaa spherical, and hence increase the amount of 

radiation. 

(e) Two bubbles, full linearized gravity approximation 

For two bubbles in the full linearized-gravity approximation, we can derive formulas 
analogous to those used with the scalar field evolution. As in the quadrupole case, let the 

bubbles be nucleated at t = 0 and at z = *d/2, with r/d = 1.2 and the same time cutoff 

function. The problem possesses rotational symmetry about the z-axis, so without loss of 
generality we take k, = 0, k, = w sin{, k, = wcost. Using the same conventions as in the 

quadrupole case, the stress-energy tensor components are given by 

Tij(fi,w) = F J O” 0 dteiwtt3C(t) [e--it,d/Z lxmu &J&e 1" d+-ik'xgigj 
+ eikZd/’ [ dBsin0 lz* d&-ik’xfifj]. 

The o integral can be done explicitly using the identity 

J 
R 

eiScos=cosnsdz = 2i”7rJn@), 
-* 

resulting in the following expressions: 

T,,@,w) = y J mdteiYLt3C(t) *-Ode sin30cos(k,tcosB+ $k,d) 0 J 0 
x [Js(k,tsin6) - Jz(k,tsinB)], 

TYu(I;,w) = y m dteiw’t3C(t) J J zr--o1 d6’ sins Bcos(k,tcosB + $k,d) 
0 0 

x [Ja(k,tsin8) + Jz(k,tsinB)], 

Tzz(&,w) = ?!E J 3 0 
mdteiY’t3C(t) J ff-adB sin0cosZ6J 0 

x cos(k,tcosO + jk,d)Js(k,tsin0), 

T,,(&,w) = * J mdte’Y’t3C(t) T-adO sin2ecos0 0 J II 
x sin(k,tcosB + fk,d)Jr(k,tsin@). 

Note that Try = TYi = 0. The energy radiated in gravity waves simplifies to 

& = G~2/T,,(~,w)sin2~+T,,(~,~)cosZ~ 

- Tgy(i(.w) - ZT,,(~,w)sin[cos[/2. 
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(25) 

Pa) 

(266) 

(26~) 

(264 

(27) 



In Fig. 4 we compare the envelope approximation with the previous results using scalar- 
field evolution. As in the quadrupole case, the agreement is excellent, with the envelope 

approximation power being slightly greater. 

III. Numerical Methods and Results 

(a) Bubble nucleation [i’] 

The envelope approximation closely reproduces the gravitational radiation from a two- 

bubble collision, even showing the same features in the spectrum. This gives us confidence 
to apply the approximation to the situation where many bubbles are nucleated, collide, 

and transform all of space to the true vacuum. In a phase transition the bubble nucleation 

rate per unit volume, r, is in general a function of time, due to its dependence upon the 

temperature of the universe or the evolution of other fields. Since very generally r is the 

exponential of some action, we write it as 

r(t) = Cc-A(‘). (28) 

The prefactor C is expected to be of the order of M4, where M is the mass or energy 

scale characterizing the transition. The tunnelling action A(t) must be greater than order 

unity; otherwise, the transition will not proceed via bubble nucleation but through spinodal 
decomposition, because of the very small potential barrier between the false and true 

vacuum states. (For the form of the potential in Eq. (5), A >> 1 obtains for e < 1.) The 

fact that the nucleation rate varies with time is crucial to the completion of the phase 

transition; moreover, how fast it varies with time determines the distribution of bubble 

sizes. As a rough rule, the phase transition completes when one bubble is nucleated per 

Hubble volume per Hubble time, i.e. when r(t)/H4 N 1. Denote the completion time, 

about which we shall be more specific, by t,. Expanding A(t) about t, gives 

A(t) = A. - P(t - L), P= - (qg) I**= (~)~,~~ (29) 

where A. = A(&). In any sensible model, /J > 0; i.e., the nucleation rate grows with time. 

As we shall see, p-r sets the time/length scale for the phase transition. 
We now derive some important results for the exponential nucleation rate. The fun- 

damental quantity is p(t), the probability that a given point in space remains in the false 

vacuum at time t. It is given by p(t) = exp[-I(t)], w h ere I(t) is the expected fraction of 

space occupied by true-vacuum bubbles at time t, without regard to bubble overlap: 

I(t) = % J 
t 

dt’r(t’)a3(t’)G(t, t’), (3Oa) 
to 

where u(t) is the cosmic scale factor, r(t, t’) is the coordinate radius at time t of a bubble 
nucleated at time t’, and ts is the time at which the phase transition begins [12]. For 
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simplicity and consistency with our previous neglect of the expansion of the universe, 

we take a to be constant and ar(t,t’) = t - t’. The neglect of the expansion is justified 
provided the duration of the transition is less than H-‘. The second assumption implies 

that bubbles expand to a size far greater than that when nucleated, which is well-justified 

in the cases of interest. Taking tc + -co with little error, it follows that 

Then the false-vacuum fraction is given by 

p(t) = e--1w e ,-s*rw/i+ 
(31) 

where the exponentiation accounts for the bubble overlap. From p(t) we can compute the 

duration of the phase transition and distribution of bubble sizes. The start and end of the 
transition are somewhat difficult to define precisely, but this ambiguity is not important. 

To be specific, we can define the start of the transition to be the time t, when p(&) = 
,-m N N 1, i.e., m < 1. Similarly, we define the end of the transition to be the time t. when 
p(t*) = e-M YZ 0, i.e. M > 1. The duration of the transition is thus 

6tEtt,-t,=ln E p-l, ( > 
and depends only logarithmically upon the precise definition of the start and end of the 

phase transition. Note that the duration of the phase transition is set by /3-l, and that 
for consistency our neglect of the expansion of the universe requires the duration to be less 

than a Hubble time: p-’ < H-‘. 

The density (per unit volume) of bubbles of a given radius 1‘ at time t is related to r(t) 

and p(t) by 

P41(t) R -s?;-exp[-l(t)eeBr - Pr]. (33) 

The distribution of bubble sizes attains its maximum at 

F(t) = $lnl(t) (34) 

and has a width of order /3-r. In discussing gravitational wave production it is more 

appropriate to examine the energy-weighted bubble distribution. Since the energy carried 

in the expanding wall of a bubble is proportional to its volume, this distribution is obtained 
by multiplying dn/dr by 9: 



This distribution is peaked at a radius twice as large as dn/dr (see Fig. 5). 

Finally, how is the key parameter p related to H and M? Since H-’ sets the &ale 
for all time evolution in the universe, on very general grounds we expect /l= -(aA/&),, 

to be of the order of A(t.)/H-‘, or 0-l N H-‘/A,. If the transition is to proceed 
via vacuum bubbles, A, must be much greater than one, so the assumption that the 

transition is “fast”, /3-r < H-l should generally be satisfied. We can also estimate A,: 
I-(&) = M4e-A* N H4 N M8/mk14, which implies that A. should be of order ln(mpl/M). 

(b) Numerical results 

In the previous sub-section we have motivated the use of an exponential nucleation 
rate; specifically, 

r(t) = roP. (3’3) 

As we have discussed, p-’ sets the fundamental time/length scale: both the duration of 

the transition and the typical bubble size are of order a few p-‘. We use a spherical 

volume, and choose Fs so that on average, the desired number of bubbles are nucleated in 

the sample volume. Our main calculations (see below) use a sample volume with a radius 
of 4.468-l and Ps = 1.38 x 10e3,B4. These parameters yield an average of around thirty 

bubbles in the sample volume. For our five different nucleation runs, the time at which the 
phase transition completes varied from 5p-’ to SD-‘, with an average of 5.638-l. (We 

use the time when the last bubble is nucleated in the sample volume as the completion 

time of the phase transition.) 

A “nucleation run” proceeds as follows. For each time step we: (1) Perform a Monte 

Carlo integration over the sample volume to determine the fraction still in the false-vacuum 

state. This takes into account all true-vacuum bubbles nucleated prior to the time step. 

(2) Multiply r(t) by the sample volume still in the false vacuum and length of the time 

step to get the mean number of bubbles nucleated during the time step. (3) Use this mean 

number to generate a Poisson-distributed random number of bubbles nucleated during the 

time step. (4) Nucleate this number of bubbles at random points in the false-vacuum and 

during the time step. We choose the time step so that the time from the first nucleation 

to the disappearance of all the false vacuum is around 100 time steps. 

The initial conditions for the simulations consist of nucleation sites and times within 

the spherical volume produced by the above procedure. We use a spherical boundary 

to minimize edge effects. We also utilize reflecting boundaries: When a bubble expands 

into the boundary, the part of the bubble that passes the boundary is ignored. In the 

context of the envelope approximation, this is equivalent to having another bubble outside 

the boundary expand into the bubble in question, with their first contact occurring at 

the boundary surface. Note that in the envelope approximation, reflecting and absorbing 

boundaries are equivalent. 

The aim of the simulation is to numerically evaluate Eq. (14) for the stress-tensor 
components Tij(k,w) for the given initial conditions, and then Eq. (15) for the spectrum 
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of gravitational radiation produced. Note no radiation is produced before the first bubble 
collision occurs or after the transition to true vacuum has completed; thus these are the 

limits for the time integration. Our numerical calculations proceed as follows: First we 

choose values for w and the direction 1;. Then we numerically evaluate the integrals 

in Eq. (14). The time partition is chosen fork around 100 time steps, and the angular 

partition is chosen to give 20 divisions per wavelength at a given radiation frequency. These 

partitions produce numerical integration results accurate to within 5% at all frequencies 

of interest. 

Since bubble nucleation is an inherently random process, we want to find the power 
spectrum of gravity waves, averaged over many different nucleation realizations. We have 

calculated the radiation from five simulations averaging 30 bubbles each, ranging from 17 

to 38 bubbles. Figure 6 shows a cross-sectional slice through the equator of the spherical 

volume for one nucleation run; the combined bubble envelope, which is the radiation 

source, is shown at several times. For each simulation, we have computed the radiation 

in six directions, along the fs, hy, and fz axes. The results for dE/dudR for several 

representative directions are displayed in Fig. 7. 

Several features are evident from these results. First, all of the spectra peak at a 
characteristic frequency which roughly corresponds to the size of the largest bubbles at 

the end of the transition. Second, the power generally increases as the number of bubbles 

fir a given volume decreases, as we expect (dE/dud!l should vary as N-5/3). Finally and 

most obviously, the various runs and directions of observations have very large fluctuations 

in both total power and spectrum shape. This is because with the relatively small number 

of bubbles, the source has large inhomogeneities on the scale of the sample volume. One 

direction in one simulation (i.e., one out of 30 probes of dE/&dR) exhibits a “beaming” 

effect, with ten to a hundred times more power than average at frequencies higher than 
several times the peak frequency. 

Figure 8 shows the power radiated in gravity waves per octave averaged over all five 

simulations, six directions per simulation (excluding the one anomalously “hot” direction); 

the error bars indicate the statistical deviation of the mean. On the same plot we show our 

previous results for the collision of two scalar-field bubbles [6]. Recall the previous results 

depend upon the cutoff time r, which corresponds to the duration of the transition. To 

compare the old results with the present ones, we set r = 3.2/p. We choose this value for 
T because it is the mean energy-weighted bubble size at the end of the phase transition ( CJ? 

Fig. 5). We have divided our results by the total vacuum energy of the sample volume, so 

the results shown are the fraction of false-vacuum energy liberated in gravitational waves 

per octave. The two-bubble and many-bubble results are remarkably similar: behavior 

at high and low frequencies is almost identical, and the peaks are at almost the same 
frequency. The overall normalization of the many-bubble case is higher, by a factor of five 

or so on the low-frequency side and by an order of magnitude on the high-frequency side. 
This increase is not unexpected: In the many-bubble case: each bubble collides with many 
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others, increasing its total radiation. The excess of high frequency power also makes sense, 
since the size of a given bubble roughly determines the frequency at which it radiates. In 

the two-bubble case, both bubbles are the same size; in the many-bubble case, smaller 

bubbles are nucleated late and increase the high-frequency power. 

The total fraction of vacuum energy released in gravitational radiation is computed by 

integrating dE/dw and dividing by the total vacuum energy released: 

EGW GP,., - = 0.50- = 
HZ 

E 
6.0 x lo-* 

Yac P2 0 7 
(37) 

.~ , 

The peak of the energy spectrum is given by urnax =z l.Sp. We note that the charac- 
teristic frequency defined by the maximum of the energy-weighted bubble distribution 

w. = &/FE G l.Sp coincides with w,,. Comparing these results with our previous two 

bubble results (taking r = 3.2/p), the peak of the spectrum occurs at the same frequency, 
while the total fraction of energy liberated in gravity waves is about a factor of five larger. 

To verify that our results are not dominated by edge effects, we ran one large calculation 

in a spherical sample volume with twice the radius of the above simulation and the same 

nucleation rate, 180 bubbles in all. The radiation spectrum dE/dw, integrated over the 
six observation directions, is plotted in Fig. 8. The shape of the spectrum is close to the 

average of the previous cases, and EGW/E,., = 0.47Gp,,/P2. The close correspondence 
(only 5% difference) with our smaller simulations demonstrates that edge effects are not 

important. 

IV. Statistical Bubble Approximation 

Now we discuss two approximations for computing the gravitational-wave production 

from the collision of many bubbles as the incoherent sum of the radiation from individual 

bubbles. To this end, we use the multipole-radiation formalism and the envelope approxi- 

mation applied to a typical bubble of size R, and integrate over the distribution of bubble 

sizes. The advantage of such an approach is ease of computation: We can immediately 

calculate the radiation spectrum for a given nucleation rate, without recourse to a many- 

bubble simulation: Of course, this approach neglects coherent effects between bubbles and 

is less accurate than our calculations of the previous Section, but as we shall see it still 

gives a reasonable estimate of the gravitational radiation produced. 

Consider a single expanding bubble in a sea of bubbles. In the envelope approximation, 

when the bubble in question begins interacting with other bubbles, portions of the bubble 

surface are “eaten.” Neglecting the interaction regions between bubbles, the stress tensor 
for what remains of the bubble is 

2 

Tij(X, t) = ~ifj 

( 1 

"'k t, @(f&t) 

where 0 is defined as 
1 

C(*, t, = { 0: 
surface in direction 0 remains uncollided 
otherwise. 

(38) 

(39) 
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When the bubble wall has completely disappeared due to collisions with other bubbles, the 
function 0 is zero. This means that an individual bubble can be treated as a source that is 
bounded in space and time: At, AZ 5 O(r), where r is the duration of the phase transition. 

The size and energy density of a given bubble at any time during a phase transition is 

known; the function 0 varies from bubble to bubble. Our statistical approximation boils 

down to estimating an “average” @(a, t). 

(a) Multipole-radiation formalism 

Using the tensor spherical harmonics presented in the Appendix, we can expand the 
transverse-traceless part of the metric perturbation (i.e., the gravity wave piece) in the far 

field zone (r >> r) aa follows [13]: 

(W] I (40) 

where the I’” and the S’” are the “mass” and “current” multipole moments of the source, 
respectively, defined by 

$1’“‘(t) = 8(-i)‘+* / r’2drrdfl’dt’du e-iw(t--t’bpg(tf, r’, Cl’) 

x CZ-~(,)T;;-~.‘~ 
[ 

(Cl’)*&,(w’) - c1,,(l)T;;~‘“(0’)*j,(,,I) 

+cQ(I)T;;+~~‘” R’ ( )*5+2(4] I (41o) 

$“(t) = 8( -i)‘+2 / r’2dr’di2’dt’du e--iw(t--t’$,pg(tf, r’, i-2’) 

x a-r(l)T;;-“‘” 
[ 

(Q’)‘j,-l(d) - .r(I)T;;+“‘” (fil,*ji,l(w~O]. (41b) 

The tensors T2i’fm(Q) and the coefficients oi are given by Equations (A.2) and (A.4) in 

the Appendix, j, is the spherical Bessel function of order I, p and 4 are indices of the 

tensor components, and rPs is the sum of the stress-energy tensor of matter (TP,,) and the 

Landau-Lifshitz pseudotensor for the effective stress-energy of the gravitational field. Since 

we are using the linearized gravity (appropriate since all gravitational effects are weak; see 

Ref. PI), rPq = TPs. The effective stress-energy tensor for gravity waves is 

TGW = QB & ~b%h~TW;TL 
113 

and the power radiated in terms of the multipoles: 

P(t) = g z( 1g2y2 + p~*~‘)l 

(42) 

(43) 
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where (. . ) indicates a spatial average over several wavelengths. 

The expressions (41) can be simplified considerably. First, only the exponential factor 

and the Bessel functions depend on w. The w integral can be performed explicitly using 

the identities 

where P,, are the Legendre polynomials. This gives 

$*(t) = 8*(-l)’ /= r’2dr’ / df-2’ /’ dr) r,,Jt - 77’‘, P’, Cl’) [*-2(l)T~:-2,‘m(n’)*P,-2(~) 
0 

+ ao (I)T;;l’“’ (Q’)*P,(q) ~:2(~)T;;+Z~‘m(~‘)*P,+2(rj)]. 

Now for a single bubble nucleated at t = 0, the O(3,l) symmetry of the scalar-field bubble 

configuration allows transformation of the radial integral: 

$1’*(t) = (Jf2 + sz(1 - ~2) - tr))2 J”‘s,:“-‘(&“) 
2 

d~fAl+i,lm(~r)~ )I 1 (46) 

where 

A”,‘*(,‘) c ~,,-,(1)T~f”*(~‘)*ic,(R’)ir,(R’). (471 

Here s = Jr” - (t - TV)* is the only quantity the scalar field depends upon, C,+‘(S) = 

&/&(r, t = 0), and I? is the unit vector in the direction of R’. Explicit expressions for 

the A”,‘* are given in the Appendix. The further substitution 

gives 

t-y 
Y= 

t - ?j@ + sy1- q2) 

l-772 ’ v=&q7 

-&t) = 8a(-1)’ lrn $ (~)‘~;d;~+,~~’ 

x [ i=J,2Pt+i (if) JdQ’A’+is’miQ’)B(Q’, Y!] (48) 

This expression can be simplified by noting that (1) d$/ds is non-zero only when s is 

smaller than the initial bubble radius, and (2) the angular integral is zero until the bubble 

first collides, which by assumption is only after the bubble has expanded by a very large 

factor. Thus y >> s and to a very good approximation s can be set to zero in the integrand 
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of the y-integral. Now using Eq. (9b), the s-integral can be performed to give ~43; 

Eq. (48) becomes 

$l’“@) = ~(-l)‘p,,t~ ~~dYi,~ozp~+i(~-l)~‘+“‘“~Y~, (49) 
1 7 

O’+i.‘“(t) ~ J d~‘A’+‘~‘“(R’)O(R’,t). 

Note O’+‘~‘” vanishes (by spherical symmetry) until the bubble first collides; likewise, 

@‘+‘a’” vanishes for t 2 R, where R is the size of the bubble when its surface has completely 

collided, since O(R,t 2 R) = 0. Analogous formulas holds for the “current” multipole 
moments Slm, but they vanish because the tensor-spherical harmonics contracted with the 

unit vectors are identically zero (see Appendix). 

The multipole radiation from a single bubble is only nonzero for 0 < t < 2R. This 
makes sense physically. The bubble wall propagates outwards at essentially the speed of 

light; even though the bubble does not begin to radiate until it first collides, the firsi 

radiation from the bubble still reaches an observer at distance I‘ at time t = r. Likewise, 

radiation generated on the opposite side of the bubble from the observer will arrive at time 

t = r + 2R, since the diameter of the bubble when it disappears is 2R. 

Equation (49) provides the key to computing the gravitational radiation from a single 

bubble. The evaluation of d’l’“/dt’ only involves computing O’+‘~‘“(t), which depends 

upon the “collision history” of a given bubble. We present two different estimates for 
O’+i’“(t). The first is analytical, based upon the fraction of the bubble surface that 

remains uncollided at time t; the second estimate is derived from our numerical simulations 

of bubble collisions. 

Once we have d’l’“/dt’ in hand for a single bubble, it is a simple matter to calculate 
the power and the spectrum of the gravitational radiation by summing incoherently over 

the distribution of bubbles: 

R) * $dR; 

-=- (‘)I’“(w, R)12 %dR; (52) 

where (‘)I’m(w, R) is the Fourier transform of d’l’“/dt’(t, R). The R in the argument 

refers to the multipole radiation from a single bubble whose size at the end of the phase 
transition is R, and dn/dR is the distribution of bubble sizes, cj. Eq. (33). Xote that the 

expressions in Eqs. (51) and (52) are for power and energy per unit volume (since dn/dR 

is the bubble size distribution per unit volume). 
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(b) Analytic approximation to O’+i’m(t) 

First we consider a very simple analytic approximation. Recall that Of+“” is an 

integral over the uncollided bubble envelope. It must depend upon the fraction of the 

bubble wall that remains uncoliided at time t. This fraction, f(t, tR), is given by 17) 

f(& tR) = e--l(t)+uw 
(53) 

where tR is the nucleation time for a bubble which has radius R at the end of the phase 

transition, i.e., tR = t, - R. Since @ ‘+i*‘“(t) must vanish at early times when the bubble 

has not yet collided (f = l), and at late times when the bubble surface is completely 

collided (f = 0), 0 ‘+i,‘m(t) can be expressed as a sum of the terms (1 - f)“f” (n, m = 

1, 2,. ). We take as a simple anaatz 

(++iJyt) = cf(l - f) 

where c is an undetermined normalization constant. 

We now estimate gravitational radiation using the quadrupole (I = 2) term of the 
multipole expansion. Taking only the simplest (; = -2) term of Eq. (49), we approximate 

P”(t) as 

$+(t, R) = $cp,,u2 J OD f(u’, R) [l - f(u’, R)] du’ 
-42 

where we set t, = 0 as the time origin so that tR = -R, u = t - tR = 1 + R, and r o( eB’, 

giving 

f(u, R) = exp [-A4eB(‘-R) + Me-BR] ; (56) 

recall M = I(t,). Note by setting t. = 0 instead of tR = 0, and by using u = t - tR, 

we take into account that bubbles of different sizes are nucleated at different times. The 

power radiated in gravitational waves per unit volume is given by the incoherent sum over 

the distribution of bubble sizes, Eq. (51); we have replaced the sum over m in Eq. (51) 

with a factor of 5. Likewise, the energy spectrum of gravitational waves per unit volume 

is given by Eq. (52). 

In Fig. 9 we show P(t) and in Fig. 10 we show wdEGw/&. At low frequencies, the 

spectrum behaves just as in our many-bubble simulation; however, at high frequencies 

it falls off more rapidly, and the peak of the spectrum is about a factor of three lower. 

The deficiency in high frequency power traces to the fact that we have neglected the 

sharp cusps which form in bubble collisions. In this approximation the fraction of vacuum 

energy released in gravity waves is EG~/E,,, = I.SC*(H/P)~, so that c 2: 0.2 reproduces 

the result of our many-bubble simulations. We have tried a range values for powers of 

f and 1 - f in Eq. (54); these alternatives change only the overall normalization of the 
spectrum (decreasing with increasing powers). 
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(c) Numerical estimation of O’+i~‘m(t) 

It is straightforward to extract from our numerical simulations average multipole mo- 

ments for a single bubble, and thereby determine a normalized approximate spectrum. 
Specifically, for 70 individual bubbles, nucleated in two of our five smaller simulations, we 

have computed d’I’“(t)/dt’ by using Eq. (49) for 1 = 2 and 1 = 3 (the quadrupole and 

octupole moments). These multipole moments give the gravitational waveforms from a 

given bubble via Eq. (40); quadrupole and octupole waveforms for a representative bubble 

are displayed in Fig. 11. The radiated power P(t) for the same bubble is shown in Fig. 12; 

note that the octupole power is only around 10% of the quadrupole power, so we csn safely 

assume that contributions from higher moments are negligible. 

To calculate an “average” energy spectrum from the 70 bubbles, we 6rst construct 

scaled multipole moments, removing a factor of R from the time variable and a factor of 

pVacR3 from d’l’“(t)/dt’ for each bubble. Then we calculate the energy spectrum for each 

bubble using these scaled moments, and average over the 70 bubbles to give the average 

spectrum for a bubble. This average energy spectrum, shown in Fig. 13, is quantitatively 
similar to the two-bubble spectrum, peaking at around wR = 4.6 with roughly the same 

overall normalization, but dropping off much faster on the high-frequency side of the peak. 

We then follow the same procedure as in the previous subsection, integrating over the 
bubble-size distribution to give the energy spectrum per unit volume of the radiation from 

the phase transition. The energy per octave is compared with the spectrum from our 

many-bubble simulation in Fig. 10. 

Overall, this statistical approximation does a reasonable job. As with the previous 

analytical approximations, it closely reproduces the low-frequency behavior. The peak of 

the approximate spectrum has about the correct amplitude, though the peak frequency 

is low by about a factor of two. The most obvious discrepancy is again the rapid high- 
frequency drop of the approximate spectrum, which falls off as w-s for large frequencies, 

in marked contrast to the many-bubble calculation, which falls off as u-~~*. As before, the 

deficiency of high-frequency power is due to the neglect of cusps. In this approximation the 

fraction of energy radiated in gravitational waves is EGW/ Eva, = 0.036( H/p)2, compared 

with 0.06(H/p)2 in the many-bubble simulations. 

The utility of our pair of statistical approximations lies in their computational ease. 
The difference in computing time between these approximations and the many-bubble 

simulations is enormous. In Fig. 10, the analytical statistical approximation required 

negligible computing time, the numerical statistical approximation used around an hour of 
computing time. while the many-bubble points required several weeks on the same machine. 

Furthermore, our averages for the radiation from a single bubble can be used with any form 
for the bubble nucleation rate, by substituting the appropriate form for dn/dR in Eq. (52). 

These approximations give a rough, but quick, estimate of the gravitational radiation from 
any strongly first-order phase transition for which the bubble nucleation rate is known. 
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V. Discussion and Concluding Remarks 

Before summarizing the present work, let us place it in context by reviewing our pre- 

vious work. Based largely on dimensional estimates, it was argued that the gravitational 

radiation produced by the collision of vacuum bubbles in a strongly first-order phase tran- 

sition could account for a substantial fraction of the vacuum energy released (51. This 
conjecture was verified in our previous numerical work [6] where we calculated the grav- 

itational radiation resulting from the collision of two vacuum bubbles by evolving the 
scalar-field configuration corresponding to two vacuum bubbles nucleated simultaneously 

and separated by distance d. This calculation was carried out in the linearized-gravity 

approximation and the expansion of the universe was neglected, both assumptions being 

valid.provided that the duration of the transition is less than a Hubble time. We found 

that the amount of radiation emitted is indeed significant and only depends upon the dura- 

tion of the collision-and not the fine-scale details of the bubbles. The fraction of vacuum 

energy liberated into gravitational waves is Ecw/Evac N 1.3 x 10m3 (iTr)*, valid for r N d, 

where T is the duration of the transition. Unfortunately, this work depended upon the 

phenomenological parameter r; moreover, it is a bold extrapolation to use the collision 

of two bubbles to model a realistic phase transition, which consists of many bubbles of 

different sizes colliding. As noted earlier, it is beyond present computational capabilities 

to collide more than a few bubbles by scalar-field evolution. 

These drawbacks led to the present work: the development of a workable approxima- 

tion to study the gravitational radiation from hundreds of colliding bubbles. Motivated 
by the fact that our two-bubble results only depend upon the gross features of the colli- 

sion, we developed the envelope approximation described in this paper. In the envelope 
approximation an expanding bubble is treated as a very thin shell of energy (equal to the 

vacuum energy it liberates); when bubbles collide only their envelope is followed and their 

overlap (interaction) regions are ignored. By considering the collision of two bubbles we 
showed that the envelope approximation accurately reproduces our previous twobubble 

results; e.g., the energy spectrum in gravitational waves agrees to around 20%. 

Having established the validity of the envelope approximation, we nucleated hundreds 

of vacuum bubbles in spherical volumes with a nucleation rate that grows as e@*: specifi- 

cally, 127 bubbles total in five small simulations and 180 bubbles in one large simulation. 

(It is argued in Ref. [7] that such a functional dependence for the bubble-nucleation rate 

applies with great generality.) Using the envelope approximation we computed the frac- 

tion of vacuum energy released in gravitational waves and found: EGW/E,,, N 0.06 (H/a)* 

with the energy spectrum peaking at a frequency w N 1.613 (Hz = 8xGp,,,/3). With this 

nucleation rate the duration of the phase transition r N 3//3; using this fact, it follows 

that the fraction of energy liberated in gravitational waves is about five times the estimate 

based upon our previous two-bubble results, with the spectrum peaking at about the same 

frequency. We believe that additional energy is released in gravity waves because a given 
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bubble collides with many other bubbles rather than a single bubble. 

In the present work we also have developed two statistical approximations that allow 

simple analytical or semi-analytical approximations to the energy spectrum radiated in 

gravitational waves. Both approximations provide better than order-of-magnitude accu- 
racy and greater ease of calculation, and are particularly well suited to computing the 

gravitational radiation for an arbitrary bubble nucleation rate. 

On very general grounds it has been argued that p-i, which controls the time/length 

scale of the phase transition, is of the order of a few percent of H-’ or greater (see Section 

IV or Ref. [7]), indicating that the fraction of vacuum energy liberated in gravitational 
waves in a phase transition that proceeds through the nucleation and collision of vacuum 

bubbles is of order 10e4 or so. We have addressed the potential observational consequences 
of our results in a Letter [S]; very briefly, in terms of the temperature of the universe after 

the phase transition, the fraction of critical density contributed by gravitational waves 
produced is Rcw N 10eg with characteristic frequency f N 10e6 (T/ GeV) Hz. There we 

also discuss the prospects for the detection of such a stochastic background of gravitational 

waves with the coming generation of laser interferometer gravity-wave observatories [14]. 

Two key assumptions underlay all of our work: (1) th e use of linearized gravity and the 

neglect of the expansion of the universe; and (2) the assumption that the bubbles expand at 

constant acceleration (put another way, all the vacuum energy liberated is converted into 

‘the kinetic energy of the bubble wall). As we discussed in Ref. [6] the first assumption is 
valid so long as the duration of the phase transition T N p-’ is much less than the Hubble 

time H-i. This should be satislied for most phase transitions as /Y’ is expected to be 

only a few percent of H-l. However, there are situations where this condition may not 

be satisfied, e.g., in some models of extended inflation (151; moreover, such situations are 

very interesting since our results indicate that the fraction of energy liberated in gravity 

waves approaches unity. We are currently trying to generalize our results by relaxing the 

first assumption [16]. 

The second assumption is that all the vacuum energy liberated by a bubble goes into the 

kinetic energy of its wall. This is certainly true for a bubble nucleated at zero temperature, 

but it may not be a good approximation to one nucleated at finite temperature because of 

the interaction of the bubble with the ambient thermal plasma. The second assumption is 

certainly well justified for models of first-order inflation where the universe has undergone 

extreme supercooling during the inflationary epoch so that the temperature of the Universe 

when the phase transition occurs is exponentially small. Whether or not this assumption 

applies in a first-order phase transition that only undergoes moderate supercooling is an 

open question. In this case it is not implausible that much or even most of the latent heat 

released is dissipated into heat rather than the bulk motion of the expanding bubble front 

(here we have used the term latent heat rather than vacuum energy). The motion of a 

bubble wall in this circumstance is not a simple matter to analyze: both the microscopic 

interaction of the ambient medium with the bubble front and bulk hydrodynamics are 
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important. Though much work has been done the results are not conclusive [17]. 
The strength of a first-order phase transition can be characterized by the ratio of 

the latent heat (per unit volume) released to the energy density of the ambient plasma, 

given by the fourth power of the temperature at which bubble nucleation commences: 

Y = ~vdC&c; note that the increase in entropy per comoving is proportional to y3/4. For 

an inflationary transition y + co, while for a weakly first-order transition 7 is of order unity 

or less. For very large y it seems clear that the bubbles must behave as vacuum bubbles 

(all the latent heat liberated goes into accelerating the bubble wall). What happens for 

moderate values of 7 is still unclear and probably depends on the specific phase transition 

under consideration. The latent heat could simply be dissipated viscously, in which case 

little gravitational radiation would be produced; or the latent heat could be converted into 

the bulk motion of the fluid (at some velocity less than the speed of light), in which case 
an appreciable amount of gravitational radiation could still be produced. This important 

issue is currently under study [IS]. 
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Appendix: Tensor Spherical Harmonics 

In this appendix we review the formalism of tensor-spherical harmonics, and calculate 

the tensor contractions needed in Sec. IV. Generally, we follow the notation presented 

in (131. A set of basis vectors Em are coupled to form the traceless and symmetric basis 

tensors tm: 

tm= 2 -f (llm’m”]2m)~“‘@~Em” 
In’=-1 m”=-l 

(A.la) 

where (a 12 ml mr//s m3) is the Clebsch-Gordan coefficient for adding angular momenta Ii 
and 1s to obtain /a. In terms of the Cartesian basis vectors e,, e,, and err these symmetric 

basis tensors are 

er - ey (3~ ey) k $ez 63 ey + ey @ e,); (il.lb) 

t*l 
1 

= r$ez @ ez + ez @ ez) - $e, @e, + e, 8 ey); 
(.4.lc) 

to = -kh C3 e, - e, c3 e, - ey B ey), 6 
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Then the relevant tensor spherical harmonics are 

TZ I’h = I’ 2 m’ m”ll m)Y”m’P”, (-4.2) 

where 1’ = I, 1 +z 1, If 2. This represents the combination of an orbital angular momentum 

1’ and a spin angular momentum 2 to give total angular momentum 1. These spherical 

harmonics are eigenfunctions of the orbital angular momentum operator L* with eigenvalue 

1(1 + l), like the more familiar Y Irn Also, we have the “pure spin tensor harmonics” for 
spin 2, 

TE2h = az([)TZ’+Z,‘m + ao(l)TZ’h + a-z(l)TZ Wm; (A.3a) 

TBZ,‘” = ~;al(~)TZ’+“‘m - ;,-1(I)T2’-‘~‘m; (A.36) 

where 

(A.4a) 

(A.4b) 

(A.4c) 

(A.4d) 

(A.4e) 

Under rotations around the radial vector, the harmonics (A.3) transform like the compo- 

nents of the polarization tensor of a pure spin-2 state, but they are not orbital angular 

momentum eigenfunctions. 

Using the above definitions, it is straightforward to calculate the explicit forms for the 

necessary tensor contractions. Equation (47) defines the auxiliary quantity 

A”s’m(Q) E al~-,(l)T;;‘~‘“(Ci)*~i,oic,(s2) 

where ? is a unit vector in the direction R. The expressions for m < 0 follow from the 

identity 
TZf’,‘m = (-l)“+‘+“(TZ I’d -,)* 

For I = 2 (quadrupole moments): 

(A.5) 

Al’,2m ZT 0 for 1’ = 1; 1’ = 3 (‘4.6) 
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Ah20 = _- t2&l + 3~0~20) 

Ah,20 = 1 28 

For I = 3 (octupole moments): 

/f,3m = 0 for I’ = 2, I’ = 4 

A5532 = _ 5 
12 

J 2 --2i4 
riRe 

cos 8 sin’ 0 
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(A.7) 

(J4.8) 

(A.91 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 



A’,31 = _ &e-+sinB [$+icos28] 

A3’31=-~e-i4sin0[~+$cos28-~cos48j 

A5831 = _ ge-‘4sin0 [i+ icos28] 

Alv3’ = /&cow9 [;cos28- $1 

,43,30 = _ 5 7 d-L 21x 2ocose+ &cos319 1 
A5,3’3 = 1 

(A.23) 

(A.24) 

(A.26) 

(A.27) 

(A.28) 
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Figure Captions 

Figure 1: The kinetic (dashed curve), gradient (dot-dashed curve), and total (solid 

curve) energy of a single expanding vacuum bubble. The scales are arbitrary; the bubble 
has initial radius of about 10, in the same units as t. Note that by t = 20, when the 

bubble has approximately doubled in size, the total energy scales almost exactly as t3, the 
vacuum energy liberated by a bubble expanding at the speed of light from zero initial size, 

and resides equally in the kinetic and gradient energies of the bubble wall. 

Figure 2: A schematic picture that illustrates the envelope approximation. The dark 
lines are the bubble walls, expanding at the speed of light. The shaded areas are the 

interaction regions; the envelope approximation neglects the interaction regions and takes 

into account only the bubble envelopes. Snapshot (b) is at a somewhat later time, and 
three new bubbles have been nucleated. 

Figure 3: The energy spectrum of radiation from two colliding bubbles, in the 
quadrupole approximation. The units are the same for both curves, but arbitrary. The 
dashed curve is the result from detailed scalar field evolution (Ref. [6]), and the solid curve 

from the envelope approximation. 

Figure 4: The energy spectrum from two colliding bubbles in the full linearized- 
gravity approximation. The units are the same as in Fig. 3. The solid line is the envelope 

approximation, which reproduces well the results from detailed scalar-field evolution [S], 
the dashed curve. 

Figure 5: The distribution of bubble sizes, both unweighted and weighted by the 
bubble’s total energy, for the exponential nucleation rate r(t) = l?ee@‘. The energy- 

weighted distribution peaks at a radius that is almost twice as large. 

Figure 6: A slice through a spherical sample volume at different times. The volume 

boundary is the outer circle; the bubble walls are the darker curves within the boundary. 

A total of 33 bubbles were nucleated in this volume during the phase transition. 

Figure 7: The differential energy spectrum dE/dwdR, for three orthogonal direc- 
tions in a simulation with 33 colliding bubbles. Note the large variations in the different 

directions. 

Figure 8: The energy spectrum per frequency octave, divided by the vacuum energy 

of the sample volume. The points with error flags are averaged over the five different 

simulations and integrated over six directions per simulation. The error bars reflect the 

standard estimate for the deviation of the mean. The dashed line is the spectrum for two 

bubbles, calculated using scalar-field evolution [6], with T = 3.2/3. The solid triangles are 
the results of the 180-bubble simulation (integrated over six directions). 

Figure 9: The radiated power P(t) per unit volume in the first statistical approxima- 
tion. The phase transition completes at t = 0. 
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Figure 10: The energy spectrum as computed in the first statistical approximation, 
with c = 1 (solid line) and the spectrum from the second statistical approximation (dashed 

line), compared with the results of our many-bubble simulations (points with error flags). 

Figure 11: The quadrupole and octupole moments for a given bubble nucleated at 

time zero. R is the final bubble radius. (a) The real and imaginary parts of the quadrupole 

moments for m = 0, 1, 2 (the imaginary part of the m = 0 moments vanish). (b) The 

same for the octupole moments for m = 0, 1, 2, 3. 

Figure 12: The quadrupole (upper curve) and octupole (lower curve) contributions 

to the total power radiated from the bubble in Fig. 10. 

Figure 13: The mean energy spectrum of a “typical” bubble, derived by averaging 
over 70 individual bubbles. The standard estimate for the deviation of the mean is around 

flO%. 
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